On the tutte polynomial of benzenoid chains
Authors
Abstract:
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
similar resources
on the tutte polynomial of benzenoid chains
the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.
full textHosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
full textThe Tutte polynomial
This is a close approximation to the content of my lecture. After a brief survey of well known properties, I present some new interpretations relating to random graphs, lattice point enumeration, and chip firing games. I then examine complexity issues and concentrate in particular, on the existence of randomized approximation schemes. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 210–...
full textFourientations and the Tutte polynomial
for α, γ ∈ {0, 1, 2} and β , δ ∈ {0, 1}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and exten...
full textThe multivariate arithmetic Tutte polynomial
We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomi...
full textOn Tutte polynomial uniqueness of twisted wheels
A graph G is called T -unique if any other graph having the same Tutte polynomial as G is isomorphic to G. Recently, there has been much interest in determining T -unique graphs and matroids. For example, de Mier and Noy [A. de Mier, M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105–119; A. de Mier, M. Noy, Tutte uniqueness of line graphs, Discrete Math. 301 ...
full textMy Resources
Journal title
volume 3 issue 2
pages 113- 119
publication date 2012-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023